Source code for aitemplate.compiler.ops.conv.conv2d_bias

#  Copyright (c) Meta Platforms, Inc. and affiliates.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
"""
Conv2d with bias.
"""
from aitemplate.compiler.ops.conv.common_conv2d_bias_activation import (
    conv2d_bias_activation,
)


# pylint: disable=C0103
[docs]class conv2d_bias(conv2d_bias_activation): r"""Conv2d with bias. Applies a 2D convolution on input in shape (N, H, W, C_in), adds a bias in shape (C_out) produces output in shape (N, H_out, W_out, C_out). N is batch size, H, W are the height and width of the input images in pixels, and C is the number of channels. Args: input: input tensor of shape :math:`(N , H , W, \text{in\_channels})` weight: filters of shape :math:`(\text{out\_channels} , K_h, K_w, \frac{\text{in\_channels}}{\text{groups}})` bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None`` This operator uses "channels_last" data format. Below is an example and its equivalence in PyTorch: .. highlight:: python .. code-block:: python X = Tensor(shape=[N, H, W, C_in], dtype="float16", name="images", is_input=True) W = Tensor(shape=[C_out, K_h, K_w, C_in], dtype="float16", name="weight", is_input=True) B = Tensor(shape=[C_out], dtype="float16", name="bias", is_input=True) OP = aitemplate.compiler.ops.conv2d_bias(stride=1, pad=1, dilate=1) Y = OP(X, W, B) .. highlight:: python .. code-block:: python X_pt = NHWC2NCHW(X_ait) W_pt = NHWC2NCHW(W_ait) B_pt = NHWC2NCHW(B_ait) Y_pt = torch.nn.functional.conv2d(X_pt, W_pt, bias=B) Y = NCHW2NHWC(Y_pt) """ def __init__(self, stride, pad, dilate=1, group=1) -> None: """Conv2d_bias constructor. Parameters ---------- stride : int Stride of the convolution pad : int Size of padding to add to the input dilate : int, optional Size of spacing between kernel elements, by default 1 group : int, optional Number of blocked connections from input channels to output channels, by default 1 """ super().__init__("identity", stride, pad, dilate=dilate, group=group) self._attrs["op"] = "conv2d_bias" self._attrs["epilogue"] = "LinearCombination" def _get_op_attributes(self): target_attrs = ["dilate", "group", "pad", "stride"] attr = {} for target_attr in target_attrs: if target_attr in self._attrs: attr[target_attr] = self._attrs[target_attr] return attr