Source code for aitemplate.compiler.ops.gemm_universal.bmm_softmax_bmm_permute

#  Copyright (c) Meta Platforms, Inc. and affiliates.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
"""
BMM_RCR + Softmax + BMM_RRR + Permute Specialization
"""

from typing import Tuple

from aitemplate.compiler.base import IntImm, Tensor
from aitemplate.compiler.ops.common.view_ops import reshape
from aitemplate.compiler.ops.gemm_universal import gemm_common as common
from aitemplate.compiler.ops.gemm_universal.bmm import bmm
from aitemplate.compiler.tensor_accessor import TensorAccessor

# pylint: disable=C0103, W0223, W0221, W0613


[docs]class bmm_softmax_bmm_permute(bmm): """BMM_RCR + Softmax + BMM_RRR + Permute Specialization This fusion is commonly used in Attention family This op is equivalent to the following PyTorch code: .. highlight:: python .. code-block:: python Q = torch.randn(B, M, K).cuda().half() K = torch.randn(B, N, K).cuda().half() V = torch.randn(B, N, O).cuda().half() attn = torch.bmm(Q, K.transpose(1, 2)) * scale attn = torch.softmax(attn, dim=-1) score = torch.bmm(attn, V) score_reshape = score.reshape(B // num_heads, num_heads, M, O) score_permute = torch.permute(score_reshape, [0, 2, 1, 3]) Limitations: 1. Output dim O should be smaller than 256. 2. CUDA backend codegen is not implemented in this release. """ def __init__(self, shape: Tuple[int], scale=1.0, causal=False, layout="0213"): """Constructor for BMM_RCR * scale + Softmax + BMM_RRR Parameters ---------- shape : Tuple[int] The reshape dim info, in attention family, the shape is [num_heads] scale : float, optional The norm scale, in attention family, it is 1.0 / sqrt(num_heads) layout : str, optional output permute layout, by default "0213" """ super().__init__() causal_mask = "_causal" if causal else "" self._attrs["op"] = "bmm_softmax_bmm_permute" + causal_mask self._attrs["scale"] = scale self._attrs["shape"] = shape self._attrs["layout"] = "Permute4DBMM_{}".format(layout) def cal_align_ab(m, n, k): return common.default_align_ab(k, k, self._attrs["inputs"][0].dtype()) self._attrs["f_ab_alignment"] = cal_align_ab def _infer_shapes(self, a: Tensor, b: Tensor, b1: Tensor): a_shapes = a._attrs["shape"] b_shapes = b._attrs["shape"] b1_shapes = b1._attrs["shape"] batch_size_a = a_shapes[0] batch_size_b = b_shapes[0] if batch_size_a != batch_size_b and batch_size_a != 1 and batch_size_b != 1: raise RuntimeError( "bmm_rcr operand A and B should have same batch_size, or batch_size = 1! " "Current shape A: {} shape B: {} .".format(a_shapes, b_shapes) ) batch_size = batch_size_b if batch_size_a == IntImm(1) else batch_size_a assert ( a_shapes[2] == b_shapes[2] ), f"bmm_rcr operand A and B should have the same K dim (dim2)! Current shape A: {a_shapes}, shape B: {b_shapes}" return [batch_size, a_shapes[1], b1_shapes[2]] def _extract_dims(self, for_profiling=False): # (B, M, K) * (B, N, K) = (B, M, N) # softmax on (B, M, N) # (B, M, N) * (B, N, O) = (B, M, O) return { # TODO: support BMM broadcast "B": [ common.DimInfo(common.Source.INPUT, tensor_idx=0, dim_idx=0), common.DimInfo(common.Source.INPUT, tensor_idx=1, dim_idx=0), common.DimInfo(common.Source.OUTPUT, tensor_idx=0, dim_idx=0), ], "M": [ common.DimInfo(common.Source.INPUT, tensor_idx=0, dim_idx=1), common.DimInfo(common.Source.OUTPUT, tensor_idx=0, dim_idx=1), ], "N": [ common.DimInfo(common.Source.INPUT, tensor_idx=1, dim_idx=1), ], "K": [ common.DimInfo(common.Source.INPUT, tensor_idx=0, dim_idx=2), common.DimInfo(common.Source.INPUT, tensor_idx=1, dim_idx=2), ], "O": [ common.DimInfo(common.Source.OUTPUT, tensor_idx=0, dim_idx=2), ], } def _invert_exec_key(self, key): return common.gemm_inverse_key_func(key) def _gen_profile_cmd(self, profiler_prefix, cfg, exec_key): def fbuild_cmd(exec_key): B, M, N, K, C = self._invert_exec_key(exec_key) cmd = [] cmd.append(B) # m cmd.append(M) # m cmd.append(N) # n cmd.append(K) # k cmd.append(C) # o return cmd return super()._gen_profile_cmd(profiler_prefix, cfg, exec_key, fbuild_cmd) def __call__(self, a: Tensor, b: Tensor, b1: Tensor) -> Tensor: """Call BMM_RCR * scale + Softmax + BMM_RRR op Parameters ---------- a : Tensor Tensor in shape of [B, M, K] b : Tensor Tensor in shape of [B, N, K] b1 : Tensor Tensor in shape of [B, N, O] Returns ------- Tensor Tensor in shape of [B, M, D, O] Raises ------ NotImplementedError Other permutation is not implemented yet """ a, b = self._align_ab(a, b) self._attrs["inputs"] = [a, b, b1] self._attrs["input_accessors"] = [ TensorAccessor(a), TensorAccessor(b), TensorAccessor(b1), ] self._set_depth() self._sanity_check(a, b) output_shape = self._infer_shapes(a, b, b1) output = Tensor(output_shape, src_ops={self}, dtype=a.dtype()) self._attrs["outputs"] = [output] self._attrs["output_accessors"] = [TensorAccessor(output)] if self._attrs["layout"] == "Permute4DBMM_0213": b, m, o = output_shape d1 = self._attrs["shape"][0] output_shape = [b.value() // d1, m, d1, o] self._extract_epilogue_alignment(output_shape) return reshape()(output, output_shape) else: raise NotImplementedError( "{} is not implemented!".format(self._attrs["layout"]) ) return output def _get_op_attributes(self): return { "causal": self._attrs["op"] == "bmm_softmax_bmm_permute_causal", "layout": self._attrs["layout"].split("_")[-1], "scale": self._attrs["scale"], "shape": self._attrs["shape"], }