# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
GEMM Specialization: Tanh(GEMM_RCR(A, B) + Bias)
"""
from aitemplate.compiler.ops.gemm_universal import gemm_rcr_bias
# pylint: disable=C0103,W0223,W0221
[docs]class gemm_rcr_bias_tanh(gemm_rcr_bias):
"""GEMM Specialization: Tanh(GEMM_RCR(A, B) + Bias)
This operator is equivalent to the following pytorch code:
.. highlight:: python
.. code-block:: python
A = torch.randn(M, K).cuda().half()
B = torch.randn(N, K).cuda().half()
Bias = torch.randn(N).cuda().half()
linear = torch.nn.functional.linear(A, B, bias=Bias)
y = torch.tanh(linear)
"""
def __init__(self):
"""Constructor for gemm_rcr_bias_tanh"""
super().__init__()
self._attrs["op"] = "gemm_rcr_bias_tanh"
self._attrs["epilogue"] = "LinearCombinationTanh"