Source code for aitemplate.compiler.ops.gemm_universal.group_gemm_rcr_bias_sigmoid

#  Copyright (c) Meta Platforms, Inc. and affiliates.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
"""Grouped GEMM Specialization: Sigmoid(GEMM_RCR(A, B) + Bias)"""

from aitemplate.compiler.ops.gemm_universal import group_gemm_rcr_bias

# pylint: disable=C0103,W0223


[docs]class group_gemm_rcr_bias_sigmoid(group_gemm_rcr_bias): """Grouped GEMM Specialization: Sigmoid(GEMM_RCR(A, B) + Bias) This operator is equivalent to the following pytorch code: .. highlight:: python .. code-block:: python # group 1 A1 = torch.randn(M1, K1).cuda().half() B1 = torch.randn(N1, K1).cuda().half() Bias1 = torch.randn(N1).cuda().half() linear1 = torch.nn.functional.linear(A1, B1, bias=Bias1) y1 = torch.sigmoid(linear1) ... # group n An = torch.randn(Mn, Kn).cuda().half() Bn = torch.randn(Nn, Kn).cuda().half() Biasn = torch.randn(Nn).cuda().half() linearn = torch.nn.functional.linear(An, Bn, bias=Biasn) yn = torch.sigmoid(linearn) """ def __init__(self): super().__init__() self._attrs["op"] = "group_gemm_rcr_bias_sigmoid" self._attrs["epilogue"] = "LinearCombinationSigmoid"