# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Upsampling2d_add op.
"""
from typing import List
from aitemplate.compiler.base import Tensor
from aitemplate.compiler.ops.upsample.upsampling_common import upsampling2d_base
# pylint: disable=C0103
[docs]class upsampling2d_add(upsampling2d_base):
"""
Fused op for bilinear_upsampling + add.
Applies a 2D bilinear upsampling to an input signal composed of several input
channels, and adds an residual.
To specify the scale, it takes the :attr:`scale_factor` as it's constructor argument.
* :attr:`scale_factor` (float): multiplier for spatial size.
Args:
input (Tensor [N, H, W, C]): the input data.
r (Tensor [N, H_out, W_out, C]): the residual.
Return:
Tensor [N, H_out, W_out, C].
"""
def __init__(self, scale_factor, mode) -> None:
super().__init__(scale_factor, mode)
self._attrs["op"] = "upsampling2d_add"
self._attrs["mode"] = mode
def __call__(self, x: Tensor, r: Tensor) -> List[Tensor]:
self._attrs["inputs"] = [x, r]
self._set_depth()
self._extract_exec_path(x)
output_shape = self._infer_shapes(x)
output = Tensor(output_shape, src_ops={self}, dtype=x._attrs["dtype"])
self._attrs["outputs"] = [output]
return output