Source code for aitemplate.frontend.nn.upsample

#  Copyright (c) Meta Platforms, Inc. and affiliates.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
"""
Unsampling2d module.
"""
from aitemplate.compiler.ops import upsampling2d, upsampling2d_add
from aitemplate.frontend.nn.module import Module


[docs]class Upsampling2d(Module): r""" Applies a 2D bilinear upsampling to an input signal composed of several input channels. To specify the scale, it takes the :attr:`scale_factor` as it's constructor argument. * :attr:`scale_factor` (float): multiplier for spatial size. * :attr:`mode` (str): the upsampling algorithm: one of ``'nearest'``, ``'linear'``, ``'bilinear'``, ``'bicubic'`` and ``'trilinear'``. Currently we support ``'bilinear'`` and ``'nearest'`` mode. Args: input (Tensor [N, H, W, C]): the input data. Return: Tensor [N, H_out, W_out, C]. """ def __init__(self, scale_factor, mode): super().__init__() self.op = upsampling2d(scale_factor, mode)
[docs] def forward(self, *args): assert len(args) == 1 x = args[0] return self.op(x)
[docs]class Upsampling2dAdd(Module): r"""Applies Upsampling2d + add.""" def __init__(self, scale_factor, mode): super().__init__() self.op = upsampling2d_add(scale_factor, mode)
[docs] def forward(self, *args): assert len(args) == 2 x = args[0] res = args[1] return self.op(x, res)